

COOPER TIRE & RUBBER COMPANY 3500 Washington Rd. • Texarkana, AR 71854 • Phone (870) 773-4502

July 11, 2012

Arkansas Department of Environmental Quality Water Division - Enforcement Branch 5301 Northshore Drive North Little Rock, Arkansas 72118-5317

RE: Cooper Tire & Rubber Company – AFIN: 46-00005 - NPDES Permit Number AR0038822 Discharge Number TX1-Q, TX1-B

Dear Sir or Madam:

The above-referenced permit requires Cooper Tire & Rubber Company Texarkana, Arkansas plant to complete routine bio-monitoring sampling at Outfall 001. The permit requires reporting the Lethal No Observed Effluent Concentration (NOEC) for *Daphnia pulex* and *Pimephales promela*. During the sampling events for the reporting period, the facility reported the required survival rate for *D. pulex* and *P. promela* at the 100% concentration level. Enclosed is the Discharge Monitoring Reports for the reporting period as required by the discharge permit AR0038822.

Respectfully,

Sødt/Cole Flant Manager

Encl.

Bio-Aquatic Testing, Inc.

Ana-Lab Cooper Tire & Rubber Co. OUTFALL NPDES 001

Client Address: 3500 WASHINGTON RD. TEXARKANA, TX 71844

48 Hr Acute Biomonitoring Report

48543

Daphnia pulex
Pimephales promelas

April 12, 2012

Approved by: Chris Robason,
President

Bio-Aquatic Testing, Inc. • 2501 Mayes Rd. Ste. 100 • Carrollton, Texas • 75006

TABLE OF CONTENTS

TOXICITY TEST REPORT

TEST SUMMARY

5

STATISTICAL & CHEMICAL ANALYSIS

Appendix A

REFERENCE TOXICANTS

Appendix B

LITERATURE REFERENCES

Appendix C

CHAIN-OF-CUSTODY SHEETS

Appendix D

REGULATORY AGENCY TABLES

Appendix E

Unless otherwise noted in the body of the report, all data reported in this document are in compliance with NELAC standards and apply only to the samples referenced within. This report document may not be edited or reproduced in part or in full by any other entity, unless Bio-Aquatic Testing, Inc. issues written approval.

*HAND-WRITTEN RAW DATA TABLES ARE AVAILABLE UPON REQUEST

'eaghe'

2501 Mayes Road, Suite 100 Carrollton, Texas 75006 Tel: (972) 242-7750 Fax: (972) 242-7749

TOXICITY TEST REPORT - 48 Hr Acute

Client:

Ana-Lab

Sample:

NPDES 001

Facility: Cooper Tire & Rubber Co.

Laboratory Number:

48543

*

Permit No.

AR0038822

Date:

April 12, 2012

Daphnia pulex and Pimephales promelas passed survival testing requirements.

SAMPLE COLLECTION:

Composite effluent samples from Ana-Lab, Cooper Tire & Rubber Co., were received on April 12, 2012 and April 13, 2012. Effluent samples were collected from Outfall NPDES 001 by facility personnel.

The effluent samples were analyzed for total residual chlorine using the Hanna Ion Specific Meter #193711 and contained <0.10 mg/L and <0.10 mg/L, respectively. Effluent and laboratory dilution water pH, temperature, and dissolved oxygen data were collected daily.

TEST PROCEDURES:

Daphnia pulex

EPA METHOD: 2021

The 48 Hr Acute Daphnia pulex test was initiated at 16:15 hours on April 12, 2012. Five effluent concentrations of 32%, 42%, 56%, 75%, and 100% were prepared utilizing synthetic water as dilution water. The test was set up with 30mL plastic cups containing 20mL of test solution. Each concentration or control consisted of five replicate cups with eight organisms each, giving a total of 40 (forty) per treatment. The control was conducted concurrently with the test. Test organisms were less than 24-hour old laboratory cultured neonates. Organisms were introduced into the test solutions using a blocking design. Food consisting of a half-milliliter suspension of the green algae, Selenastrum capricornutum, and YTC was added to the test solutions each day. The test proceeded for 48 hours. Data on survival was collected daily and water quality parameters were recorded after each 24-hour period. The test was renewed daily with newly prepared solutions. The test ended at 16:00 hours on April 14, 2012. Survival data was statistically (p=0.05) analyzed according to EPA procedures to determine the Lowest Observable Effect Concentration (LOEC) and the No Observable Effect Concentration (NOEC).

SURVIVAL:

Daphnia pulex

The Daphnia pulex survival data failed Shapiro Wilk's test for normality at the 0.01 (0.900) alpha level after the arc sine (square root (Y)) transformation. Bartlett's test for homogeneity is sensitive to non-normal data and should not be performed if data fails Shapiro Wilk's test. The non-parametric Steel's Many-One Rank test performed on Daphnia pulex survival data demonstrated no statistically significant differences between the control and any of the effluent concentrations tested.

LOEC: Not Calculable (Q) NOEC: 100% Effluent

TEST PROCEDURES:

Pimephales promelas

EPA METHOD: 2000

The 48 Hr Acute Pimephales promelas test was initiated at 17:00 hours on April 12, 2012. Five effluent concentrations of 32%, 42%, 56%, 75%, and 100% were prepared utilizing synthetic water as dilution water. The test was set up with 450mL plastic cups containing 250mL of test solution as test chambers. Each concentration or control consisted of five replicate chambers containing eight organisms each, giving a total of 40 (forty) per treatment. The control was conducted concurrently with the test. Test organisms were laboratory cultured P. promelas seven days old, and all larvae used in each test are hatched within 24 hours of each other. The number of surviving larvae and water quality parameters were recorded after each 24 hour period. The test was renewed daily with fresh solutions. Surviving larvae in each test chamber were fed freshly hatched brine shrimp two times per day. The test proceeded for 48 hours. The test ended at 11:25 hours on April 14, 2012. Survival was statistically (p=0.05) analyzed according to EPA procedures to determine the Lowest Observable Effect Concentration (LOEC) and the No Observable Effect Concentration (NOEC).

SURVIVAL:

Pimephales promelas

Pimephales promelas survival data failed Shapiro Wilk's test for normality at the 0.01 (0.900) alpha level after the arc sine (square root (Y)) transformation. Bartlett's test for homogeneity is sensitive to non-normal data and should not be performed if data fails Shapiro Wilk's test. The non-parametric Steel's Many-One Rank test performed on Pimephales promelas survival data demonstrated no statistically significant differences between the control and any of the effluent concentrations tested.

LOEC: Not Calculable (Q) NOEC: 100% Effluent

TOXICITY TEST

48 Hr Acute Daphnia pulex

Lab ID: 48543

Test Temperature (oC):

 25 ± 1

Permit Number: ADPCE

AR0038822

Photo Period:

16 hours light 8 hours dark

Sample Type: Composite

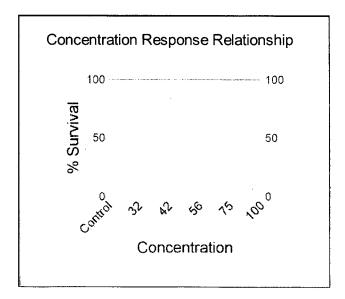
Outfall Name: NPDES 001

Begin Date: 4/12/2012

Receiving Water Name:

End Date: 4/14/2012

Test Start Time:


Client: Ana-Lab Cooper Tire & Rubber Co.

16:15

Test End Time:

16:00

<i>:</i>	Effluent							SUI	RVIV	/AL								
4	Con.					N	umbe	r Of A	dive I	er Re	plicat	e						Avg%
	%	<u> </u>		4/12					4/13		:	1		4/14.				Surv.
		Α	В	С	D	Е	A	В	C	D	E	<u>A</u>	В	<u>C</u>	D	<u>E</u>		
,	Control	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8		100.0%
!	32	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8		100.0%
	42	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	i	100.0%
	56	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8) (100.0%
i ! <u>.</u>	75	8	8	8	8	8	8	8	8	. 8	8	8	8	8	8	8	ļ	100.0%
	100	8	8	8	8	8	8	8	8	8	8	_ 8	8	8	8	8		100.0%
				<u> </u>								<u></u>						
										i								
																		}

TOXICITY TEST

48 Hr Acute Pimephales promelas

lient: Ana-Lab

Cooper Tire & Rubber Co.

Lab ID: 48543

Permit Number: ADPCE

AR0038822

Test Temperature (oC): 25 ± 1

Sample Type: Composite

Outfall Name: NPDES 001

Photo Period: 16 hours light

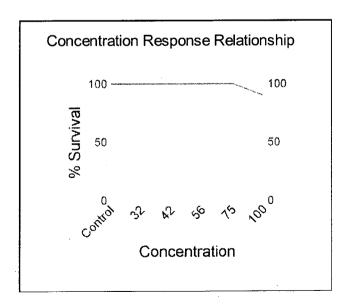
8 hours dark

Receiving Water Name:

Test Start Time:

17:00

Test End Time:


11:25

Begin Date: 4/12/2012

End Date: 4/14/2012

Effluent						SU	JRV	IVA	L				•			
Concentration						Numb	er Of A	Alive P	er Rep	olicate						Avg%
%			4/12			Ĺ		4/13					4/14			Surv.
:	A	В	\mathbf{c}	D	E	A	В	C	D	Е	A	В	C	D	E	
Control	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	100.0%
32	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	100.0%
42	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	100.0%
56	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	100.0%
75	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	100.0%
100	8	8	8	8	8	8	8	8	8	7	7	7	8	8.	6	90.0%
		? ,		ì		11							į			

^{*} cup spilled

APPENDIX A

STATISTICS SUMMARY

Both the lethal and sub-lethal endpoints were statistically calculated according to their respective EPA guidelines. The Chronic Freshwater organisms were calculated according to EPA-821-R-02-013, October 2002 Fourth Edition. The Chronic Marine and Estuarine organisms were calculated according to EPA-821-R-02-014, October 2002 Third Edition. The Acute Freshwater and Marine organisms were calculated according to EPA-821-R-02-012, October 2002 Fifth Edition. Listed below are the basic principles of these guidelines. If you would like a copy of the raw statistical calculations for your test then please contact us.

The chronic and acute *Pimephales promelas* and *Menidia beryllina* survival data is analyzed using Shipiro Wilks Test and Bartlett's Test. If the data passes both tests then the data is run through ANOVA and Dunnetts (parametric). If the data fails Shipiro Wilks Test or Bartlett's Test then Steels Many One Test (non-parametric) is used. The chronic *Pimephales promelas* and *Menidia beryllina* growth data is analyzed using Shipiro Wilks Test and Bartlett's Test. If the data passes one of these tests then the data is run through ANOVA and Dunnetts. If the data fails Shipiro Wilks Test and Bartlett's Test then Steels Many One Test is used.

The chronic *Mysidopsis bahia* survival data is analyzed using Chi-square test and Bartlett's Test. If the data passes both tests then the data is run through ANOVA and Dunnetts. If the data fails Chi-square test or Bartlett's Test then Steels Many One Test is used. *Mysidopsis bahia* growth data is analyzed using Chi-square test and Bartlett's Test. If the data passes one of these tests then the data is run through ANOVA and Dunnetts. If the data fails Chi-square test and Bartlett's Test then Steels Many One Test is used.

The acute *Mysidopsis bahia* survival data is analyzed using Shipiro Wilks Test and Bartlett's Test. If the data passes both tests then the data is run through ANOVA and Dunnetts. If the data fails Shipiro Wilks Test or Bartlett's Test then Steels Many One Test is used.

The chronic *Ceriodaphnia dubia* survival data are analyzed using the Fisher's Exact Test. The chronic *Ceriodaphnia dubia* reproduction and are analyzed using the Chi-square test and Bartlett Test. If the data passes one of these tests then the data is run through ANOVA and Dunnetts. If the data fails Chi-square test and Bartlett's Test then Steels Many One Test is used.

The acute *Daphnia pulex* and *Ceriodaphnia dubia* survival data is analyzed using Shipiro Wilks Test and Bartlett's Test. If the data passes both tests then the data is run through ANOVA and Dunnetts. If the data fails Shipiro Wilks Test or Bartlett's Test then Steels Many One Test is used.

Bio-Aquatic Testing, Inc.

48543

2501 Mayes Road, Suite 100 Carrollton, TX 75006 Tel: 972-242-7750 Fax: 972-242-7749

FRESH WATER TEST SETUP FORM

Client: Ana-Lab	Perm	it <u>AR003</u>	8822				
Facility: Cooper Tire & Rubber Co.	Lab l	Number 4	8543				
Outfall Name: NPDES 001		Number	of samp	oles	2		
Dilution Water: Synthetic Lab	Sx #	Rcvd Date	Rcvd Time	Samplin Begin Date	ng Dates End Date	Samplii Start	ng Times End
Receiving Water Name:	1	04/12/12		04/10/12		20:50	20:30
Dechlorinate Sample: No	2	04/13/12	15:50	04/11/12	04/12/12	20:50	20:30
Type of Test(s) Daphnia pulex 48 Hr Acute Pimephales promelas 48 Hr Acute	•	Renew Sx Renew Sx Renew Sx	x#	1 Date: 2 Date: Date: Date: Date: Date:	4/13/20	12	
Controls: Synthetic Lab pH Match: Hardness Match: moderate	_	Test S				te:	
Daphnia pulex Test Set Up: 5 Reps & Pimephales Test Set Up: 5 Reps &							
Concentrations: 32 42 56 75 100				_%	LF %	100	_
Test Chemistry on these dilutions: 32 42 56 75 10	00				,	<u></u>	
Samples received by: Oreyhound OUPS N Opony Express OFederal Express OAmeri	Deliv	ered C	Delta l Southy Bio Pi	west Airline	O De	1	
Other:							

DeChlor

(ml/L)

N/A

N/A

Hardness, Alkalinity, Residual Chlorine, Specific Conductivity, and Salinity Analysis Data

Ana-Lab **Client:**

Lab ID: 48543

Cooper Tire & Rubber Co. Facility:

Received

Time

16:00

15:50

Outfall: NPDES 001

Dilution Water(s): Synthetic Lab

Date

4/12/12

4/13/12

Effluent

Sample #

2

Test Date: April 12, 2012

1	**	100 %		
	Analyst Initials	Initial Salinity	Adjusted Salinity	Temp. Received
]	JM	N/A	N/A	5
7	JR	N/A	N/A	5.3

Chlorine Analysis Method: Hanna Ion Specific Meter #193711

** Residual Cl2

< 0.10

< 0.10

Dechlorination Reagent:

Ammonia

mg/L

<0.25

< 0.25

Sodium Thiosulfate

	Rece	ived	Hardness As mg/L		pH 4.50	POINT POINT 0 =/- 0.05 . CaCO ₃	Analyst Initials
Sample #	Date	Time	CON	100	CON	100	
1	4/12/12	16:00	130.0	96.0	60.0	48.0	PW
2	4/13/12	15:50	130.0	170.0	60.0	147.0	PW

^{**}Hardness taken post zeolite treatment

			Values a Highest D		Values 100% D			
Date		Sample #	Specific Conductivity as umhos/cm	Salinity (ppt)	Residual Chlorine as mg Cl ₂ /L	¹ ml 0.02N Na ₂ S ₂ O ₃ /L	Analyst	Other
4/12	Lab H2O		428	0.2			DS	
4/13	Lab H2O		502	0.3	•		JL	
4/14	Lab H2O						DS	
4/15	Lab H2O							
4/16	Lab H2O		. ,					
4/17	Lab H2O				1			
4/18	Lab H2O				-			
4/12	OUTFALL*	1	194	0.1	<0.10	N/A	DS	
4/13	OUTFALL*	2	701	0.4	< 0.10	N/A	JL	
4/14	OUTFALL*						DS	
4/15	OUTFALL*							
4/16	OUTFALL*							
4/17	OUTFALL*			; 				
4/18	OUTFALL*						!	

^{*}Conductivity is taken on the highest remaining effluent concentration used for test renewal, not necessarily 100%

pH, Dissolved Oxygen

48 Hr Acute

Daphnia pulex

Client: Ana-Lab

Lab ID: 48543

Facility: Cooper Tire & Rubber Co.

Dilution Water(s): Synthetic Lab

Outfall: NPDES 001

Test Begin Date: April 12, 2012

NR indicates that the test is non-renewal.

							Concent	ration		 	\neg
ANALYST	DATE	TIME	SX#	UNIT	Control	32	42	56	75	00	
DS	4/12	Start 25 ± 1	1	pH DO (mg/L)	7.8	7.8	7.8	7.8	7.:	 7.8	
JL	4/13	24 Hr 25 ± 1	1	pH DO (mg/L)	8.1	8.1	8.1	8.1	8.	 3.1	
JL.	4/15	Renew	2	pH DO (mg/L)	8.2	8.2	8.2	8.2	8	 3.2	
DS	4/14	48 Hr 25 ± 1	2	pH DO (mg/L)	8.4	8.4	8.4	8.3	8.	 3.3	
סט	- 4/14	Renew		pH DO (mg/L)							
		72 Hr 25 ± 1		pH DO (mg/L)							
	4/15	Renew		pH DO (mg/L)							
		96 Hr 25 ± 1	- Indiana	pH DO (mg/L)							
	4/16	Renew		pH DO (mg/L)		1					
	4/17	120 Hr 25 ± 1		pH DO (mg/L)		*					
		Renew		pH DO (mg/L)							
	4/19	144 Hr 25 ± 1		pH DO (mg/L)							
	4/18	Renew		pH DO (mg/L)							
	4/19	168 Hr,		pH DO (mg/L)							

pH, Dissolved Oxygen

48 Hr Acute

Pimephales promelas

Client: Ana-Lab

Lab Number: 48543

Facility: Cooper Tire & Rubber Co.

Dilution Water(s): Synthetic Lab

Outfall: NPDES 001

Test Begin Date: April 12, 2012

NR indicates that the test is non-renewal.

							-	Concer	tration		
ANALYST	DATE	TIME	SX#	UNIT	Control	32	42	56	75	100	
7.0	4/10	Start		pH	7.8	7.8	7.8	7.8	7.8	7.8	
DS	4/12	25 ± 1	: 1	DO (mg/L)	8.3	8.3	8.6	8.9	9.2	9.5	
		24 Hr									
			1	рН	7.7	7.7	7.7	7.6	7.6	7.5	
JL	4/13	25 ± 1		DO (mg/L)	7.8	7.5	7.3	7.1	7.0	6.8	
		Renew	, 2	рН	8.2	8.2	8.2	8.2	8.2	8.2	
	<u> </u>			DO (mg/L)	8.2	8.2	8.2	8.1	8.1	8.0	
yes.		48 Hr		pН	8.2	8.0	8.0	8.0	8.0	7.9	
	ì	25 ± 1	, 2	DO (mg/L)	8.1	7.8	7.8	7.7	7.7	7.6	
DS	4/14			рН			1				
		Renew	,	DO (mg/L)							
		72 Hr	.	pH							
	4/15	25 ± 1		DO (mg/L)				<u> </u>			
	4,13	Renew		рН							
			Kenew		DO (mg/L)		<u></u>	<u> </u>			
		96 Hr									
		25 ± 1		pH DO (mg/L)							
	4/16			pH !							
j ;		Renew		DO (mg/L)							
		<u></u>									
		120 Hr	1 ;	рН		1					
	4/17	25 ± 1		DO (mg/L)							
	4/1/	Renew		рН							
	1	Kellew		DO (mg/L)			-				
	į	144 Hr									
	1410	25 ± 1		рН							
	4/18			DO (mg/L)							
		Renew		pH PO (// //)			,				
		160 11-	 	DO (mg/L)	<u> </u>	<u> </u>			L		
	4/19	168 Hr	!	рН							
<u> </u>	<u></u>	25 ± 1		DO (mg/L)							

Appendix B

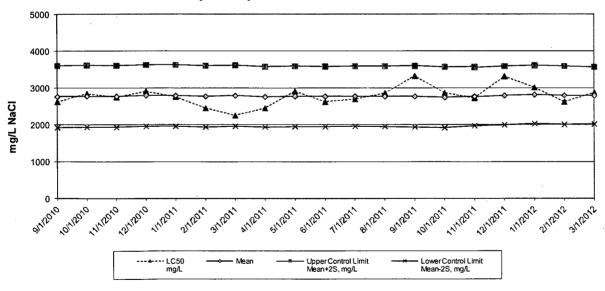
Daphnia pulex

BIO-AQUATIC TESTING, INC.

Carrollton, TX

REFERENCE TOXICANTS

Bio-Aquatic Testing conducts reference toxicant testing monthly for organisms cultured in-house. For studies requiring purchased organisms, reference toxicant testing is performed simultaneously. Reference toxicant testing validates data and measures organism consistency. Only reagent grade chemicals are used of the following choices: sodium laurel sulfate (SLS), copper sulfate, cadmium chloride, and sodium chloride. Organism responses are tracked with control charts for each reference toxicant/organism combination. The data are examined for sensitivity trends and to determine if results are within EPA described limits.


ACUTE REFERENCE TOXICANT TEST RESULTS

DILUTION WATER:	Stallua	iu Sym	mene M	CSIIWau	Ç1		
CHEMICAL:	Sodiun	n Chlor	ide				
DURATION:	48 Hou	ır Acut	e				
TEST NUMBER:	243						
PROJECT NUMBER:	50953						
START DATE:	3/28/20	012					
START TIME:	14:45						
TOTAL NUMBER EXPOSED:	40 o	rganisr	ns per c	oncentr	ation		
CONCENTRATIONS (mg/L):	CON	250	500	1000	2000	3000	4000
NUMBER DEAD PER CONCENTRATION:	0	1	1	2	3	16	40
TEST METHODS:	As liste	ed in E	PA-821	-R-02-0	12		
STATISTICAL METHODS:	SURV	IVAL:	Trimme	ed Spea	rman-K	arber	٠
LC50: 95% LOWER CONFIDENCE LIMITS: 95% UPPER CONFIDENCE LIMITS:	262	1.60 0.66 2.57	mg/L mg/L mg/L				

REFERENCE TOXICANT STATISTICAL RESULTS: LC $_{50}$ AND CONTROL LIMITS Daphnia pulex EXPOSED TO SODIUM CHLORIDE, 48 HOUR STATIC RENEWAL

Test Number	Date	Project Number	Toxicant Lot Number	Statistical Method	LC ₅₀ mg/L	Mean	Twice Standard Deviation 2S	Upper Control Limit Mean+2S, ma/l	Lower Control Limit Mean-2S,
224	9/7/2010	45724	831604	Trimmed Spearman-Karber	2625.3	2766.7	837.9	3604.6	1928.9
225	10/1/2010	46169	831604	Trimmed Spearman-Karber	2848.4	2777.8	836.8	3614.6	1941.0
226	11/23/2010	47181	831604	Trimmed Spearman-Karber	2751.4	2771.8	837.8	3609.6	1934.0
227	12/28/2010	47698	000520	Trimmed Spearman-Karber	2912.6	2795.4	836.0	3631.4	1959.4
228	1/26/2011	47833	000520	Trimmed Spearman-Karber	2765.4	2794.5	835.1	3629.6	1959.4
229	2/24/2011	48034	000520	Trimmed Spearman-Karber	2449.5	2775.7	831.7	3607.4	1944.0
230	3/23/2011	48122	000520	Trimmed Spearman-Karber	2255.8	2794.3	827.1	3621.5	1967.2
231	4/26/2011	48254	000520	Trimmed Spearman-Karber	2452.7	2763.9	821.1	3585.0	1942.8
232	5/26/2011	48342	000520	Trimmed Spearman-Karber	2913.0	2774.9	821.4	3596.3	1953.5
233	6/27/2011	48478	023007	Trimmed Spearman-Karber	2625.3	2768.9	819.3	3588.2	1949.7
234	7/27/2011	48937	023007	Trimmed Spearman-Karber	2694.4	2777.6	816.2	3593.8	1961.4
235	8/2/2011	48959	023007	Trimmed Spearman-Karber	2862.9	2773.5	816.7	3590.2	1956.9
236	9/7/2011	49154	023007	Trimmed Spearman-Karber	3329.2	2772.6	828.9	3601.5	1943.8
237	10/5/2011	49219	023007	Trimmed Spearman-Karber	2868.1	2750.4	825.5	3575.9	1924.8
238	11/8/2011	49503	023007	Trimmed Spearman-Karber	2729.7	2777.2	799.3	3576.5	1978.0
239	11/29/2011	49797	023007	Trimmed Spearman-Karber	2741.5	2766.0	791.7	3557.7	1974.2
240	12/27/2011	50692	023007	Trimmed Spearman-Karber	3317.2	2797.6	796.0	3593.6	2001.6
241	1/18/2012	50765	023007	Trimmed Spearman-Karber	3015.7	2822.9	791.2	3614.1	2031.8
242	2/22/2012	50855	023007	Trimmed Spearman-Karber	2625.3	2801.6	790.1	3591.7	2011.5
243	3/28/2012	50950	023007	Trimmed Spearman-Karber	2871.6	2797.4	776.9	3574.2	2020.5

Daphnia pulex Acute Control Chart

Appendix B

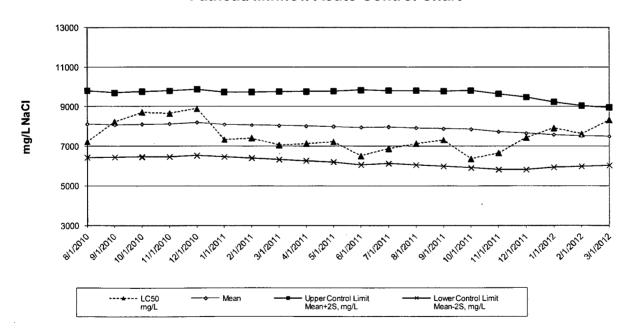
Pimephales promelas

BIO-AQUATIC TESTING, INC.

Carrollton, TX

REFERENCE TOXICANTS

Bio-Aquatic Testing conducts reference toxicant testing monthly for organisms cultured in-house. For studies requiring purchased organisms, reference toxicant testing is performed simultaneously. Reference toxicant testing validates data and measures organism consistency. Only reagent grade chemicals are used of the following choices: sodium laurel sulfate (SLS), copper sulfate, cadmium chloride, and sodium chloride. Organism responses are tracked with control charts for each reference toxicant/organism combination. The data are examined for sensitivity trends and to determine if results are within EPA described limits.


ACUTE REFERENCE TOXICANT TEST RESULTS

DILUTION WATER:	Standard Synthetic Freshwater
CHEMICAL:	Sodium Chloride
DURATION:	48 Hour Acute
TEST NUMBER:	242
PROJECT NUMBER:	50953
START DATE:	3/28/2012
START TIME:	16:55
TOTAL NUMBER EXPOSED:	40 organisms per concentration
CONCENTRATIONS (mg/L):	CON 2000 4000 6000 8000 10000 12000
NUMBER DEAD PER CONCENTRATION:	0 0 0 0 13 38 40
TEST METHODS:	As listed in EPA-821-R-02-012
STATISTICAL METHODS:	SURVIVAL: Trimmed Spearman-Karber
LC50:	8315.66 mg/L
95% LOWER CONFIDENCE LIMITS:	7986.98 mg/L
95% UPPER CONFIDENCE LIMITS:	8657.87 mg/L

REFERENCE TOXICANT STATISTICAL RESULTS: LC 50 AND CONTROL LIMITS Pimephales promelas EXPOSED TO SODIUM CHLORIDE, 48 HOUR STATIC RENEWAL

Test Number	Date	Project Number	Toxicant Lot Number	Statistical Method	LC₅₀ mg/L	Mean	Twice Standard Deviation 2S	Upper Control Limit Mean+2S, mg/L	Lower Control Limit Mean-2S, mg/L
223	8/24/2010	45667	831604	Trimmed Spearman-Karber	7225.2	8119.3	1689.3	9808.6	6430.0
224	9/8/2010	45733	831604	Trimmed Spearman-Karber	8215.2	8075.5	1627.4	9702.9	6448.0
225	10/27/2010	46455	831604	Trimmed Spearman-Karber	8711.7	8109.8	1651.7	9761.6	6458.1
226	11/23/2010	47175	831604	Trimmed Spearman-Karber	8647.5	8129.0	1668.1	9797.1	6460.9
227	12/29/2010	47696	000520	Trimmed Spearman-Karber	8897.3	8199.9	1672.3	9872.2	6527.6
228	1/25/2011	47835	000520	Trimmed Spearman-Karber	7334.5	8103.3	1635.7	9739.0	6467.7
229	2/25/2011	48048	000520	Trimmed Spearman-Karber	7412.8	8072.0	1664.6	9736.6	6407.5
230	3/23/2011	48121	000520	Trimmed Spearman-Karber	7059.1	8045.1	1713.5	9758.6	6331.6
231	4/26/2011	48255	000520	Trimmed Spearman-Karber	7138.7	8022.2	1750.6	9772.8	6271.6
232	5/26/2011	48339	000520	Trimmed Spearman-Karber	7221.9	7990.7	1785.8	9776.5	6204.9
233	6/29/2011	48483	023007	Trimmed Spearman-Karber	6503.2	7950.1	1884.6	9834.7	6065.6
234	7/27/2011	48944	023007	Trimmed Spearman-Karber	6874.8	7967.4	1835.4	9802.8	6132.0
235	8/30/2011	49054	023007	Trimmed Spearman-Karber	7133.5	7926.0	1872.9	9799.0	6053.1
236	9/29/2011	49213	023007	Trimmed Spearman-Karber	7315.3	7885.9	1890.0	9775.9	5996.0
237	10/26/2011	49501	023007	Trimmed Spearman-Karber	6368.1	7863.6	1952.9	9816.4	5910.7
238	11/28/2011	49800	023007	Trimmed Spearman-Karber	6652.4	7732.7	1906.3	9639.0	5826.4
239	12/28/2011	50693	023007	Trimmed Spearman-Karber	7435.6	7657.2	1821.9	9479.2	5835.3
240	1/18/2012	50766	023007	Trimmed Spearman-Karber	7918.8	7585.2	1643.7	9228.8	5941.5
241	2/23/2012	50858	023007	Trimmed Spearman-Karber	7625.5	7523.3	1530.3	9053.6	5993.0
242	3/28/2012	50953	023007	Trimmed Spearman-Karber	8315.7	7500.3	1463.6	8963.9	6036.7

Fathead Minnow Acute Control Chart

APPENDIX C

LITERATURE REFERENCES

- U.S.E.P.A., 2002. Short-Term Methods For Estimating The Chronic Toxicity Of Effluents And Receiving Water To Freshwater Organisms (Fifth Edition) U.S. Environmental Protection Agency, Office of Water, Washington D.C., EPA-821-R-02-012.
- U.S.E.P.A., 2002. Short-Term Methods For Estimating The Chronic Toxicity Of Effluents and Receiving Water To Marine And Estuarine Organisms (Third Edition) U.S. Environmental Protection Agency, Office of Water, Washington D.C., EPA-821-R-02-014.
- U.S.E.P.A., 2002. Short-Term Methods For Estimating The Chronic Toxicity Of Effluents And Receiving Water To Freshwater Organisms (Fourth Edition) U.S. Environmental Protection Agency, Office of Water, Washington D.C., EPA-821-R-02-013.
- U.S.E.P.A., 1991. Technical Support Document For Water Quality-Based Toxics Control, U.S. Environmental Protection Agency, EPA-505-2-90-001.
- Zarr, Jerrold, H., 1984. Biostatistical Analysis, (Second Edition). Prentice-Hall, Inc., Englewood Cliffs, N.J.

CHAIN-OF-CUSTODY SHEETS

Appendix D

2501 MA	BIO-AQUATIC TESTING, INC 2501 MAYES RD., STE. 100 CARROLLTON, TX 75066 PH: 972-242-7750 FAX: 972-242-7749			Please R	eview &	Com	plete	e Secti	FODY ons A, B,	•	Samp	b id :		543 3
Client: Ana-Lab					******			Hillian Angelo		from the S			(a) ir	. "A"·
Facility: Cooper Tire & I	Rubber Co.				Delow to			anges, ater Spe		. ITOITI LITE S	ciledui	Saltwate	` <u> </u>	
Permit No: AR0038822 Outfall: NPDES 001 Client Contact: ROY WHIT	ГЕ			C. dubia 'water flea)	D. pulex			(water flea)	P. promelas (minnow)	Selenastrum green algae)		M. beryllina (minnow)	, .	Mysidopsis 5 (shrimp)
Client Phone: 903-984-0	Client Phone: 903-984-0551			(wa	D.		Ď.	(wa	9. P	Sele (gree		M. to (m		Mys (SI
REVIEW SCHEDULED TEST(s): 48 Hr Acute Daphnia pulex 48 Hr Acute Pimephales promelas To Ship the 1st Sample of			□Chronic □96 Hour □48 Hour □24 Hour	□Chro □96 H 1248 H □24 H	lour lour	□96 □48	nronic Hour Hour Hour	□Chronic □96 Hour ⊠48 Hour □24 Hour	□96 Hou □48 Hou □24 Hou	"	Chronic 96 Hour 48 Hour 24 Hour		Chronic 96 Hour 48 Hour 24 Hour	
Concentration: 32 42 56 75 100 4/9/2012 (For TX) Setup separate 24hr Acute Test?					uarter Pules onthly Fathe /ET Limit									
Sample ID or Location: (Outfall No. or Name)	Sample ID or Location: E = Effluent RS = Rec. Stream			Sample Time (military) Grab Sampled By: or (Sign and Print Name)					Number Of Containers Shipped					
1 Outfall DOI E	4/10	112 4	1/11/12	2050	2030	Com	0	Char	s Dike	Cha	rles (Allen		(
2	,						`		***					
Relinauished By:			Date	Time				Receiv	ad Pur)ate		Time
Relinauished Bv:		4/1	2/12	0720			W	Receiv	ed DV.		4.12		17	
2													/60	(G) ox
3														
Bio-Aquatic Sample Log ANALYTICAL TEST	ING CH	neck for Amr	rsonnel: O \ monia: O Yes	s 📵 No	Temperatu		·i <u>ン</u> ら	Time (C)	Int. Salinity:	ළිට By:	ppt Ad	j. Salinity:		ppt
KEQUIKED	REQUIRED Dechlorinate Sample: O Rece Dilution Water: Synth				Chlorine	: 2	<u> </u>	mg/l	Ammonia:	91	Other:	n:		

2501 MAYES R CARROLLTON	BIO-AQUATIC TESTING, INC 2501 MAYES RD., STE. 100 CARROLLTON, TX 75006 PH: 972-242-7750 FAX: 972-242-7749				k Complet	e Sect	TODY ions A, B, C _Second, or		Sample No:	<u>48543</u> 48543
Client: Ana-Lab			: Use	below to	make ch	anges	, if different	from the S	cheduled Test	(s) in "A":
Facility: Cooper Tire & Rubbe	er Co.				Freshw	ater Spe	ecies		Saltwate	r Species
Permit No: AR0038822 Outfall: NPDES 001 Client Contact: ROY WHITE Client Phone: 903-984-0551	Outfall: NPDES 001 Client Contact: ROY WHITE Client Phone: 903-984-0551		C. dubia (water flea)	D. pulex	(water flea)	(water flea)	P. promelas (minnow)	Selenastrum (green algae)	M. beryllina (minnow)	Mysidopsis (shrimp)
A REVIEW SCHEDULED TEST(s): 48 Hr Acute Daphnia pulex 48 Hr Acute Pimephales promelas To Ship the 1st Sample on:		□Chronic □96 Hour □48 Hour □24 Hour	□Chro □96 H ⊠48 H □24 H	Hour □9	hronic 6 Hour 8 Hour 4 Hour	□Chronic □96 Hour ⋈48 Hour □24 Hour	□96 Hou □48 Hou □24 Hou	ır 📗 🛚 96 Hour	□ Chronic □ 96 Hour □ 48 Hour □ 24 Hour	
Concentration: 32 42 56 75 (For TX) Setup separate 24hr Acute Test?	R	Quarter Pule onthly Fathe WET Limit								
Constitution of the consti	Sample Type: E = Effluent Sample ID or Location: RS = Rec. Stream				***************************************		***************************************			
Sample ID or Location: Sample ID or Location: Sample Type: = = Effluent RS = Rec. Stream S = Sediment	Sar From	nple Date		le Time itary) To	Grab or Composite		(Sig	Sampled B n and Print		Number Of Containers Shipped
Sample ID or Location: (Outfall No. or Name) E = Effluent RS = Rec, Stream S = Sediment		-	(mil	itary)	or	 	(Sig	n and Print		Containers
Sample ID or Location: (Outfall No. or Name) E = Effluent RS = Rec, Stream S = Sediment	From	То	(mil	itary) To	or Composite	 	· · · · · · · · · · · · · · · · · · ·	n and Print	Name)	Containers Shipped
Sample ID or Location: (Outfall No. or Name) E = Effluent RS = Rec, Stream S = Sediment	From	То	(mil	itary) To	or Composite	 	rs D.de	n and Print	Name) Hes Allen Date	Containers Shipped
Sample ID or Location: (Outfall No. or Name) 1 Ontfall Ool E 2	From	To 4/12/12	(mil	itary) To	or Composite	Cha	rs D.de	n and Print	Name)	Containers Shipped
Sample ID or Location: (Outfall No. or Name) 1 Ontfall Ool E 2 3 Relinquished By:	From	To 4/12/12	rom 2050 Time	itary) To	or Composite	Cha	rs D.de	n and Print	Name) Hes Allen Date	Containers Shipped
Sample ID or Location: (Outfall No. or Name) 1 Ontfall Ool E 2 3 Relinquished By:	From	To 4/12/12	rom 2050 Time	itary) To	or Composite	Cha	rs D.de	n and Print	Name) Hes Allen Date	Containers Shipped
Sample ID or Location: (Outfall No. or Name) 1 Ontfall Ool E 2 3 Relinquished By:	From 4/11/12 BAT samp	To 4/12/12	(mil From 2050 Time 0730	itary) To 2030	composite Comp	Receiv	rs D.de	n and Print	Name) Wes Allea Date 4-(3-12)	Containers Shipped

REGULATORY AGENCY TABLES

Appendix E

Table 1 (Sheet 1 of 2) BIOMONITORING REPORT

Daphnia pulex

SURVIVAL TEST

Permittee: Ana-Lab - Cooper Tire & Rubber Co. Permit No.: AR0038822 Outfall No.: NPDES 001										
Dates and ti		FROM:	Date/Ti 4/10/20 ⁻ 4/11/20 ⁻		TO: _ TO:	Date/Time 4/11/2012@ 2 4/12/2012@ 2	0:30			
	Test Initiatio	n: Time:	16:15	Date:	4/12/2012					
Diluti	on Water Used:	Rec	eiving Water		X Synth	netic Dilution W	/ater			
DATA TABLE FOR SURVIVAL OF Daphnia pulex										
			EFFL	UENT CONC	ENTRATION (%)				
TIME	REPLICATE	0%	32 %	42 %	56 %	75 %	100 %			
	Α	100	100	100	100	100	100			
	В.	100	100	100	100	100	100			
24 HOUR	С	100	100	100	100	100	100			
	D	100	100	100						
	E	100 100 100 100 100 100 100 100 100 100 100 100								
	Α	100	100	100	100	100	100			
	В	100	100	100	100	100	100			
48 HOUR	С	100	100	100	100	100	100			
	D	100	100	100	100	100	100			
	E	100	100	100	100	100	100			
М	EAN	100	100	100	100	100	100			
C	CV % ¹	0.00	0.00	0.00	0.00	0.00	0.00			
¹ Coefficient of '	Variation = (standard		x 100)	?= canno	t be calculated due		or lab exception			
DUNNETTS	PROCEDURE OR	STEEL'S MAN	NY-ONE RANK	TEST (as appro	opriate for Letha	lity)				
	survival at 48 hours						tical dilution?			
	CRITICAL DILUTI	ON (100 %)	:	YES	X	NO				
If you report I	VO, enter a '0' on ti	he DMR form f	or Parameter N	o. TEM3D, othe	r wise enter a '1	' .				
Enter the per	cent effluent corres	ponding to eac	ch NOEC below	:						
NOEC	SURVIVAL:	100	% Effluent	(Paramet	er TOM3D)					
LOEC	SURVIVAL: Q* refers to			(Paramet	ter TXM3D)					
	Q* refers to a value that is not calculable									

Prepared by: Deanus Blake

Approved by:

Table 1 (Sheet 2 of 2) BIOMONITORING REPORT

Pimephales promelas

SURVIVAL TEST

TIME REPLICE A B 24 HOUR C D E 48 HOUR C D E MEAN CV % 1 1 Coefficient of Variation	nitiation: Time Jsed:	Receiving Wat	Date:	### TO:TO:	2012 Synthe omelas RATION	4/12/2012(etic Dilutio - I (%) 75 100 100 100 100	@ 20:30
TIME REPLICE A B 24 HOUR C D E AB 48 HOUR C D E MEAN CV % 1	DATA TABLE CATE 0% 100 100 100 100 100 100 100	32 100 100 100 100 100 100	## Property Property	X	Syntheomelas RATION 6 % 00 00 00 00	75 100 100 100 100 100	% 100 100 100 100 100 87.5
TIME REPLICE A B 24 HOUR C D E A B 48 HOUR C D E MEAN CV % 1 1 Coefficient of Variation	DATA TABLE 0% 100 100 100 100 100 100 100	32 100 100 100 100 100 100 100	## ## ## ## ## ## ## ## ## ## ## ## ##	CONCENT	RATION 6 % 00 00 00 00	75 100 100 100 100 100 100	% 100 100 100 100 100 87.5
A B 24 HOUR C D E A B A B A B C D E MEAN CV % 1 1 Coefficient of Variation	DATE 0% 100 100 100 100 100 100 100 100 100	32 100 100 100 100 100 100	% 42 100 100 100 100 100 100	% 50 10 11 11 11 11 11 11 11 11 11 11 11 11	RATION 6 % 00 00 00 00 00	75 100 100 100 100 100 100	100 100 100 100 87.5
A B 24 HOUR C D E A B 48 HOUR C D E MEAN CV % 1 1 Coefficient of Variation	0% 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100	% 42 100 100 100 100 100 100	% 50 10 11 11 11 11 10	6 % 00 00 00 00 00	75 100 100 100 100 100	100 100 100 100 87.5
A B 24 HOUR C D E A B A B A B C D E MEAN CV % 1 1 Coefficient of Variation	0% 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100	100 100 100 100 100 100	10 11 11 11 11 10	00 00 00 00 00	100 100 100 100 100 100	100 100 100 100 87.5
24 HOUR C D E A B 48 HOUR C D E MEAN CV % 1 1 Coefficient of Variation	100 100 100 100 100 100 100	100 100 100 100 100 100	100 100 100 100 100 100	1 1 1 1 1 1 1 1 1	00 00 00 00	100 100 100 100 100	100 100 100 87.5
24 HOUR C D E A B 48 HOUR C D E MEAN CV % 1 1 Coefficient of Variation	100 100 100 100 100 100	100 100 100 100 100	100 100 100 100 100	10 10	00 00 00	100 100 100 100	100 100 87.5
48 HOUR C D E MEAN CV % 1 1 Coefficient of Variation	100 100 100 100 100	100 100 100 100	100 100 100 100	10	00 00	100 100 100	100 87.5
48 HOUR C D E MEAN CV % 1 1 Coefficient of Variation	100 100 100 100	100 100 100	100 100 100	1 10	00	100 100	87.5
48 HOUR C D E MEAN CV % 1 1 Coefficient of Variation	100 100 100	100 100	100	10		100	
48 HOUR C D E MEAN CV % 1 1 Coefficient of Variation	100 100	100	100		00		87.5
48 HOUR C D E MEAN CV % 1 1 Coefficient of Variation	100			· I 1			
MEAN CV % 1 Coefficient of Variation		100	1 400	<u>'</u>	00	100	87.5
MEAN CV % 1 Coefficient of Variation	100		100	11	00	100	100
MEAN CV % 1 1 Coefficient of Variation	100	100	100	1	00	100	100
CV % ¹ Coefficient of Variation	100	100	100	1	00	100	75
¹ Coefficient of Variation	100	100	100	1	00	100	90
	0.00	0.00	0.00	0.	.00	0.00	11.62
	= (standard deviation	n/mean) x 100)	?=	cannot be calc	ulated due	to 100% mc	ortality or lab exce
DUNNETT'S PROCEDURS the mean survival at 4	IRE OR STEEL'S 8 hours significan	MANY-ONE RA tly different (p=0	NK TEST (as .05) than the	appropriate f control's survi	or Lethal val for the	ity) e low flow o	or critical dilutio
CRITICAL	DILUTION (100)%):	YES	S	X	_NO	
If you report NO, enter a	'0' on the DMR fo	orm for Paramete	er No. TEM60	, other wise e	enter a '1'	•	
Enter the percent effluer	nt corresponding to	o each NOEC be	elow:				
NOEC SURVIVA	L:100	% Effluer	nt (Par	ameter TOM6	6C)		
LOEC SURVIVA	L: <u>Q*</u>	% Effluen	nt (Pai	ameter TXM6	SC)		
	refers to a value that		•				

Bio-Aquatic Testing, Inc.

Ana-Lab Cooper Tire & Rubber Co. OUTFALL NPDES 001

48 Hr Acute Biomonitoring Report

48542

Pimephales promelas

June 14, 2012

Approved by: Chris Robason,
President

Bio-Aquatic Testing, Inc. • 2501 Mayes Rd. Ste. 100 • Carrollton, Texas • 75006

TABLE OF CONTENTS

TOXICITY TEST REPORT	3
TEST SUMMARY	5
STATISTICAL & CHEMICAL ANALYSIS	Appendix A
REFERENCE TOXICANTS	Appendix B
LITERATURE REFERENCES	Appendix C
CHAIN-OF-CUSTODY SHEETS	Appendix D
REGULATORY AGENCY TABLES	Appendix E

Unless otherwise noted in the body of the report, all data reported in this document are in compliance with NELAC standards and apply only to the samples referenced within. This report document may not be edited or reproduced in part or in full by any other entity, unless Bio-Aquatic Testing, Inc. issues written approval.

*HAND-WRITTEN RAW DATA TABLES ARE AVAILABLE UPON REQUEST

2501 Mayes Road, Suite 100 Carrollton, Texas 75006 Tel: (972) 242-7750 Fax: (972) 242-7749

TOXICITY TEST REPORT - 48 Hr Acute

Client:

Ana-Lab

Sample:

NPDES 001

Facility: Cooper Tire & Rubber Co.

Laboratory Number:

48542

Permit No.

AR0038822

June 14, 2012

Pimephales promelas passed survival testing requirements.

SAMPLE COLLECTION:

Composite effluent samples from Ana-Lab, Cooper Tire & Rubber Co., were transported to Bio-Aquatic Testing via Greyhound. Samples were received on June 14, 2012 and June 15, 2012. Effluent samples were collected from Outfall NPDES 001 by facility personnel.

The effluent samples were analyzed for total residual chlorine using the Hanna Ion Specific Meter #193711 and contained <0.10 mg/L and <0.10 mg/L, respectively. Effluent and laboratory dilution water pH, temperature, and dissolved oxygen data were collected daily.

TEST PROCEDURES:

Pimephales promelas

EPA METHOD: 2000

The 48 Hr Acute Pimephales promelas test was initiated at 11:30 hours on June 14, 2012. Five effluent concentrations of 32%, 42%, 56%, 75%, and 100% were prepared utilizing synthetic water. The test was set up with 450mL plastic cups containing 250mL of test solution as test chambers. Each concentration or control consisted of five replicate chambers containing eight organisms each, giving a total of 40 (forty) per treatment. The control was conducted concurrently with the test. Test organisms were laboratory cultured P. promelas ten days old, and all larvae used in each test are hatched within 24 hours of each other. The number of surviving larvae and water quality parameters were recorded after each 24 hour period. The test was renewed daily with fresh solutions. Surviving larvae in each test chamber were fed freshly hatched brine shrimp two times per day. The test proceeded for 48 hours. The test ended at 11:30 hours on June 16, 2012. Survival data was statistically (p=0.05) analyzed according to EPA procedures to determine the Lowest Observable Effect Concentration (LOEC) and the No Observable Effect Concentration (NOEC).

SURVIVAL: Pimephales promelas

The Pimephales promelas survival data failed Shapiro Wilk's test for normality at the 0.01 (0.900) alpha level after the arc sine (square root (Y)) transformation. Bartlett's test for homogeneity is sensitive to non-normal data and should not be performed if data fails Shapiro Wilk's test. The non-parametric Steel's Many-One Rank test performed on Pimephales promelas survival data demonstrated no statistically significant differences between the control and any of the effluent concentrations tested.

LOEC: Not Calculable (Q) NOEC: 100% Effluent

TOXICITY TEST

48 Hr Acute Pimephales promelas

Lab ID: 48542

Client: Ana-

Cooper Tire & Rubber Co.

Test Temperature (oC):

 25 ± 1

Permit Number: ADPCE

AR0038822

Photo Period:

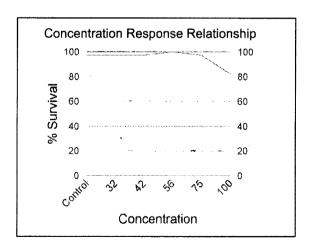
16 hours light 8 hours dark

Sample Type: Composite

Outfall Name: NPDES 001

Begin Date: 6/14/2012

Receiving Water Name:


End Date: 6/16/2012

11:30 Test End Time: 11:30 Test Start Time:

SURVIVAL

Effluent		SURVIVAL														
Con.		Number Of Alive Per Replicate									Avg%					
%		6/14			6/15			6/16				Surv.				
	A	В	С	D	E	A	В	С	D	E	A	В	С	D	E	
Control	8	8	8	8	8	8	8	8	. 8	8	8	7	8	8	8	97.5%
32	8	8	8	8	8	8	7	8	8	8	8	7	.8	8	8	97.5%
42	8	8	8	8	8	8	8	8	8	8	7	8	8	8	8	97.5%
56	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	100.0%
75		8	8	8	8	8	8	8	8	8	8	8	8	7	8	97.5%
100	<u> </u>	8	8	8	8	8	7	8	8	8	8	5	5	7	8	82.5%

^{*} spilled cup

APPENDIX A

STATISTICS SUMMARY

Both the lethal and sub-lethal endpoints were statistically calculated according to their respective EPA guidelines. The Chronic Freshwater organisms were calculated according to EPA-821-R-02-013, October 2002 Fourth Edition. The Chronic Marine and Estuarine organisms were calculated according to EPA-821-R-02-014, October 2002 Third Edition. The Acute Freshwater and Marine organisms were calculated according to EPA-821-R-02-012, October 2002 Fifth Edition. Listed below are the basic principles of these guidelines. If you would like a copy of the raw statistical calculations for your test then please contact us.

The chronic and acute *Pimephales promelas* and *Menidia beryllina* survival data is analyzed using Shipiro Wilks Test and Bartlett's Test. If the data passes both tests then the data is run through ANOVA and Dunnetts (parametric). If the data fails Shipiro Wilks Test or Bartlett's Test then Steels Many One Test (non-parametric) is used. The chronic *Pimephales promelas* and *Menidia beryllina* growth data is analyzed using Shipiro Wilks Test and Bartlett's Test. If the data passes one of these tests then the data is run through ANOVA and Dunnetts. If the data fails Shipiro Wilks Test and Bartlett's Test then Steels Many One Test is used.

The chronic Mysidopsis bahia survival data is analyzed using Chi-square test and Bartlett's Test. If the data passes both tests then the data is run through ANOVA and Dunnetts. If the data fails Chi-square test or Bartlett's Test then Steels Many One Test is used. Mysidopsis bahia growth data is analyzed using Chi-square test and Bartlett's Test. If the data passes one of these tests then the data is run through ANOVA and Dunnetts. If the data fails Chi-square test and Bartlett's Test then Steels Many One Test is used.

The acute *Mysidopsis bahia* survival data is analyzed using Shipiro Wilks Test and Bartlett's Test. If the data passes both tests then the data is run through ANOVA and Dunnetts. If the data fails Shipiro Wilks Test or Bartlett's Test then Steels Many One Test is used.

The chronic *Ceriodaphnia dubia* survival data are analyzed using the Fisher's Exact Test. The chronic *Ceriodaphnia dubia* reproduction and are analyzed using the Chi-square test and Bartlett Test. If the data passes one of these tests then the data is run through ANOVA and Dunnetts. If the data fails Chi-square test and Bartlett's Test then Steels Many One Test is used.

The acute Daphnia pulex and Ceriodaphnia dubia survival data is analyzed using Shipiro Wilks Test and Bartlett's Test. If the data passes both tests then the data is run through ANOVA and Dunnetts. If the data fails Shipiro Wilks Test or Bartlett's Test then Steels Many One Test is used.

Bio-Aquatic Testing, Inc. 2501 Mayes Road, Suite 100 Carrollton, TX 75006 Tel: 972-242-7750 Fax: 972-242-7749

FRESH WATER TEST SETUP FORM

Client: Ana-Lab	Permi	it <u>AR003</u>	8822				
Facility: Cooper Tire & Rubber Co.	Lab N	Iumber <u>4</u>	8542				
Outfall Name: NPDES 001		Number	of samp	oles	2		
Dilution Water: Synthetic Lab	Sx #	Rovd Date	Rcvd Time	Samplin Begin Date	ng Dates End Date	Samplii Start	ig Times End
Receiving Water Name:	1	06/14/12	08:30	06/12/12	06/13/12	02:45	02:25
Dechlorinate Sample: No	2	06/15/12	08:15	06/13/12	06/14/12	02:45	02:25
Type of Test(s) Pimephales promelas 48 Hr Acute			#	Date: Date: Date: Date: Date: Date:	6/15/201	2	
Controls: Synthetic Lab pH Match: Hardness Match: moderate	_					 te:	
Pimephales Test Set Up: 5 Reps &	8	Organism	ıs per Re	р			
Test Set Up:							
Concentrations: 32 42 56 75 100				%	LF %	100	_
Test Chemistry on these dilutions: 32 42 56 75 10	00						
Samples received by: Oreginal OUPS N Oreginal Pony Express Octiont Oreginal Federal Express American	Deliver	red O	Delta D Southw Bio Pic	est Airlines	O Delt		
Other:		-					
-							
						<u> </u>	

Hardness, Alkalinity, Residual Chlorine, Specific Conductivity, and Salinity Analysis Data

Client: Ana-Lab

Lab ID: 48542

Facility: Cooper Tire & Rubber Co.

Outfall: NPDES 001

Dilution Water(s): Synthetic Lab

Test Date: June 14, 2012

**	100	%
	100	70

Effluent Sample #	Received Date Time	** Residual Cl ₂	DeChlor (ml/L)	** Ammonia mg/L	Analyst Initials	Initial Salinity	Adjusted Salinity	Temp. Received
1	6/14/12 08:30	<0.10	N/A	<0.25	DF	N/A	N/A	3.7
2	6/15/12 08:15	<0.10	N/A	<0.25	DF	N/A	N/A	4.2

Chlorine Analysis Method: Hanna Ion Specific Meter #193711

Dechlorination Reagent: Sodium Thiosulfate

	Recei	ived		(EDTA) CaCO ₃	pH 4.50	POINT 0 =/- 0.05 CaCO ₃	Analyst Initials
Sample #	Date	Time	CON	100	CON	100	
1	6/14/12	08:30	130.0	58.0	55.0	49.0	PW
2	6/15/12	08:15	130.0	158.0	55.0	99.0	PW
		.[]					

^{**}Hardness taken post zeolite treatment

			Values a Highest D		100% I	are at Dilution		0.1
Date		Sample #	Specific Conductivity as umhos/cm	Salinity (ppt)	Residual Chlorine as mg Cl ₂ /L	¹ ml 0.02N Na ₂ S ₂ O ₃ /L	Analyst	Other
6/14	Lab H2O		461	0.3		· · · · · ·	DS	
6/15	Lab H2O		466	0.3			JL	
6/16	Lab H2O						DS	
6/17	Lab H2O					•		
6/18	Lab H2O							
6/19	Lab H2O]			
6/20	Lab H2O							
6/14	OUTFALL*	1	197	0.1	< 0.10	N/A	DS	
. 6/15	OUTFALL*	2	397	0.2	< 0.10	N/A	JL	
6/16	OUTFALL*]					DS	
6/17	OUTFALL*							
6/18	OUTFALL*							
6/19	OUTFALL*						ļ	
6/20	OUTFALL*							

^{*}Conductivity is taken on the highest remaining effluent concentration used for test renewal, not necessarily 100%

BIO-AQUATIC TESTING, INC. pH, Dissolved Oxygen

48 Hr Acute

Pimephales promelas

Client: Ana-Lab

Lab ID: 48542

Facility: Cooper Tire & Rubber Co.

Outfall: NPDES 001

Dilution Water(s): Synthetic Lab Test Begin Date: June 14, 2012

NR indicates that the test is non-renewal.

					(many contract of the contract
LANGE	D. 175	mp er	المتتت	[17.17]	Concentration
ANALYST	DATE	TIME	SX#	UNIT	Control 32 42 56 75 100
DS	6/14	Start	1	рН	8.2 8.2 8.1 8.1 8.0
		25 ± 1		DO (mg/L)	8.2 8.2 8.2 8.3 8.3
		24 Hr			
		25 ± 1	1	DO (mg/L)	7.9 7.9 7.9 7.8 7.7 7.7 7.5 7.5 7.6 7.6 7.6 7.5
几	6/15	23 ± 1	\vdash	DO (mg/L)	
		Renew	2	рĦ	7.9 8.0 7.9 7.8 7.8
				DO (mg/L)	7.7 8.0 8.1 8.2 8.2 8.3
		48 Hr			
		\vdash	2	pН	7.9 7.9 7.9 7.9 7.9 7.9
DS	6/16	25 ± 1		DO (mg/L)	7.8 7.8 7.8 7.7 7.6
		Renew		pН	
		Kenew		DO (mg/L)	
		72 Hr			
		\vdash		pH	
1	6/17	25 ± 1		DO (mg/L)	
		Renew		pН	
				DO (mg/L)	
		96 Hr			
		25 ± 1		pH	
	6/18	23 ± 1	\vdash	DO (mg/L)	
		Renew		pН	
		Kellew		DO (mg/L)	
		120 Hr			
		=		PΗ	
	6/19	25 ± 1	-	DO (mg/L)	
		Renew		pН	
				DO (mg/L)	
		144 Hr			
		25 ± 1		pH DO (#)	
	6/20			DO (mg/L)	
		Renew		рН	
				DO (mg/L)	
	4/21	168 Hr		<u></u>	
	6/21	25 ± 1		DO (mg/L)	├ ─ ┥├─┤├─┤├─┤├─┤├─┤
R	eport Date:	0 6/26/2 0	1 2 Revisi l	of the (mg/r)	L

Appendix B

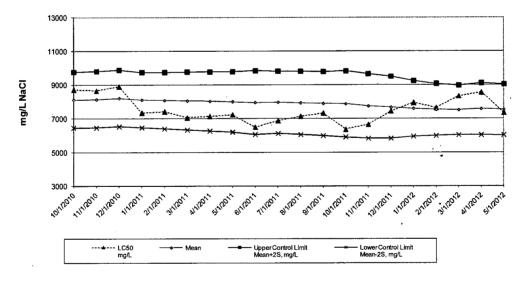
Pimephales promelas

BIO-AQUATIC TESTING, INC.

Carrollton, TX

REFERENCE TOXICANTS

Bio-Aquatic Testing conducts reference toxicant testing monthly for organisms cultured in-house. For studies requiring purchased organisms, reference toxicant testing is performed simultaneously. Reference toxicant testing validates data and measures organism consistency. Only reagent grade chemicals are used of the following choices: sodium laurel sulfate (SLS), copper sulfate, cadmium chloride, and sodium chloride. Organism responses are tracked with control charts for each reference toxicant/organism combination. The data are examined for sensitivity trends and to determine if results are within EPA described limits.


ACUTE REFERENCE TOXICANT TEST RESULTS

DILUTION WATER: Standard Synthetic Freshwater Sodium Chloride CHEMICAL: 48 Hour Acute DURATION: 244 TEST NUMBER: 51139 PROJECT NUMBER: 5/29/2012 START DATE: 16:20 START TIME: TOTAL NUMBER EXPOSED: 40 organisms per concentration CON 2000 4000 6000 8000 10000 12000 CONCENTRATIONS (mg/L): 0 27 NUMBER DEAD PER CONCENTRATION: 40 40 As listed in EPA-821-R-02-012 **TEST METHODS:** SURVIVAL: Trimmed Spearman-Karber STATISTICAL METHODS: LC50: 7334.70 mg/L 95% LOWER CONFIDENCE LIMITS: 6993.84 mg/L 95% UPPER CONFIDENCE LIMITS: 7692.17 mg/L

REFERENCE TOXICANT STATISTICAL RESULTS: LC $_{50}$ AND CONTROL LIMITS Pimephales promelas EXPOSED TO SODIUM CHLORIDE, 48 HOUR STATIC RENEWAL

Test Number	Date	Project Number	Toxicant Lot Number	Statistical Method	LC ₅₀ mg/L	Mean	Twice Standard Deviation 2S	Upper Control Limit Mean+2S, mg/L	Lower Control Limit Mean-2S, mg/L'
225	10/27/2010	46455	831604	Trimmed Spearman-Karber	8711.7	8109.8	1651.7	9761.6	6458.1
226	11/23/2010	47175	831604	Trimmed Spearman-Karber	8647.5	8129.0	1668.1	9797.1	6460.9
227	12/29/2010	47696	000520	Trimmed Spearman-Karber	8897.3	8199.9	1672.3	9872.2	6527.6
228	1/25/2011	47835	000520	Trimmed Spearman-Karber	7334.5	8103.3	1635.7	9739.0	6467.7
229	2/25/2011	48048	000520	Trimmed Spearman-Karber	7412.8	8072.0	1664.6	9736.6	6407.5
230	3/23/2011	48121	000520	Trimmed Spearman-Karber	7059.1	8045.1	1713.5	9758.6	6331.6
231	4/26/2011	48255	000520	Trimmed Spearman-Karber	7138.7	8022.2	1750.6	9772.8	6271.6
232	5/26/2011	48339	000520	Trimmed Spearman-Karber	7221.9	7990.7	1785.8	9776.5	6204.9
233	6/29/2011	48483	023007	Trimmed Spearman-Karber	6503.2	7950.1	1884.6	9834.7	6065.6
234	7/27/2011	48944	023007	Trimmed Spearman-Karber	6874.8	7967.4	1835.4	9802.8	6132.0
235	8/30/2011	49054	023007	Trimmed Spearman-Karber	7133.5	7926.0	1872.9	9799.0	6053.1
236	9/29/2011	49213	023007	Trimmed Spearman-Karber	7315.3	7885.9	1890.0	9775.9	5996.0
237	10/26/2011	49501	023007	Trimmed Spearman-Karber	6368.1	7863.6	1952.9	9816.4	5910.7
238	11/28/2011	49800	023007	Trimmed Spearman-Karber	6652.4	7732.7	1906.3	9639.0	5826.4
239	12/28/2011	50693	023007	Trimmed Spearman-Karber	7435.6	7657.2	1821.9	9479.2	5835.3
240	1/18/2012	50766	023007	Trimmed Spearman-Karber	7918.8	7585.2	1643.7	9228.8	5941.5
241	2/23/2012	50858	023007	Trimmed Spearman-Karber	7625.5	7523.3	1530.3	9053.6	5993.0
242	3/28/2012	50953	023007	Trimmed Spearman-Karber	8315.7	7500.3	1463.6	8963.9	6036.7
243	4/24/2012	51029	023007	Trimmed Spearman-Karber	8542.0	7566.2	1528.5	9094.7	6037.7
244	5/29/2012	51139	023007	Trimmed Spearman-Karber	7334.7	7522.2	1500.3	9022.4	6021.9

Fathead Minnow Acute Control Chart

APPENDIX C

LITERATURE REFERENCES

- U.S.E.P.A., 2002. Short-Term Methods For Estimating The Chronic Toxicity Of Effluents And Receiving Water To Freshwater Organisms (Fifth Edition) U.S. Environmental Protection Agency, Office of Water, Washington D.C., EPA-821-R-02-012.
- U.S.E.P.A., 2002. Short-Term Methods For Estimating The Chronic Toxicity Of Effluents and Receiving Water To Marine And Estuarine Organisms (Third Edition) U.S. Environmental Protection Agency, Office of Water, Washington D.C., EPA-821-R-02-014.
- U.S.E.P.A., 2002. Short-Term Methods For Estimating The Chronic Toxicity Of Effluents And Receiving Water To Freshwater Organisms (Fourth Edition) U.S. Environmental Protection Agency, Office of Water, Washington D.C., EPA-821-R-02-013.
- U.S.E.P.A., 1991. Technical Support Document For Water Quality-Based Toxics Control, U.S. Environmental Protection Agency, EPA-505-2-90-001.
- Zarr, Jerrold, H., 1984. Biostatistical Analysis, (Second Edition). Prentice-Hall, Inc., Englewood Cliffs, N.J.

CHAIN-OF-CUSTODY SHEETS

Appendix D

-	25 C	501 MAYES F ARROLLTON	D., STE. 100 I, TX 75006				Comple	te Sect	TODY tions A, B, C		Lab id :	48543 18543	
Repor	P	H: 972-242-77	750 FAX: 972	2-242-7749	Check	Sample No	. : <u>X</u> F	irst,	_Second, or	Third.	P.O. No:	The same of the same of the same of	
t Date	Client: Ana-Lab				B Use b	elow to	make ch	nanges	, if different f	rom the Sch	eduled Test	s) in "A":	
: 06/2	Facility: Cooper T	ire & Rubbe	er Co.				Freshy	vater Sp	ecies		Saltwate	r Species	
Report Date: 06/26/2012 Revision 0	Permit No: AR00388 Outfall: NPDES 0 Client Contact: ROY Client Phone: 903-5	001 WHITE			C. dubia (water flea)	D. pulex		D. magna (water flea)	P. promelas (minnow)	Selenastrum (green algae)	M. beryllina (minnow)	Mysidopsis (shrimp)	
	A: REVIEW SCHE 48 Hr Acute 48 Hr Acute	DULED TE —Daphnia p Pimephales p	ulex	To Ship the	□Chronic □96 Hour □48 Hour □24 Hour	□Chro □96 H □48 H □24 H	our 🗆 9	Chronic 86 Hour 18 Hour 24 Hour	□Chronic □96 Hour ⊠48 Hour □24 Hour	□96 Hour □48 Hour □24 Hour	□ Chronic □ 96 Hour □ 48 Hour □ 24 Hour	□Chronic □96 Hour □48 Hour □24 Hour	
1	Concentration: 32 (For TX) Setup separate 2	42 56 7: 4hr Acute Test?		4/9/2012		uarter Pule onthly Fathe /ET Limit		T	RC 0.6	ol mg/L			
14 of 17	Sample ID or Location: (Outfall No. or Name)	Sample Type: E = Effluent RS = Rec. Stream S = Sediment		nple Date	Sampl (mili From		Grab or Composite	е	(Sig	Sampled By: n and Print Na	ime)	Number Of Containers Shipped	
	1 Dutfall 001	E	6/12/12	6/13/13	0245	0225	Comp	Cha	LCD. AL	~ <u> </u>	harles Alle	- 1	
	2												
	3 D. Relinauis	had By:		Date	Time		/ /	Recei	ved Bv:		Date	Time	
	1 Chais D. 1			6/13/13	6730		11			/	1412	10530	
Bio-A	2								<u></u>				
quatic	3											m kan sa a a a a a a a	
Bio-Aquatic Lab ID: 48542	Bio-Aquatic Samp ANALYTICAL T REQUIR	resting	Check fo	le personnel: O r Ammonia: O Ye nate Sample: O Ye O Receivir ı Water: O Syntheti	es No es No	Date: Temperatu Chlorine		7 (C)	Int. Salinity:		ot Adj. Salinity: Other:		

pH:

DO:

Condition:

Dilution Water: O Receiving Stream
Synthetic Lab

REGULATORY AGENCY TABLES

Appendix E

Table 1 (Sheet 1 of 1) BIOMONITORING REPORT

Pimephales promelas SURVIVAL TEST

			-Lab	- Coopei	_							
	Permit No.: AR0			······································			-					
	Outian No.: NPD	E3 00 I		<u> </u>								
		EDOM:	Date/Ti			Date/Time						
Dates and		COO!		2 @02:45	_TO:	6/13/2012@ 0: 6/14/2012@ 0:						
Composite	es were collected:	1 1(OW).	0/13/201	12 00 02.45	_ 10	0/14/2012@0/	2.25					
	Test Initiation	on: Time:_	11:30	Date:	6/14/2012							
Dilt	ution Water Used:	Rei	beiving Water		X Synth	netic Dilution W	/ater					
	<u>DA</u>	TA TABLE FO	OR SURVIVAL	OF Pimepha	les promelas							
			EFFLUENT CONCENTRATION (%)									
TIME	REPLICATE	0%	32 %	42 %	56 %	75 %	100 %					
	Α	100	100	100	100	100	100					
	В	100	87.5	100	100	100	87.5					
24 HOUR	С	100	100	100	100	100	100					
24 HOUR	D	100	100	100	100	100	100					
	E	100	100	100	100	100	100					
······	Α	100	100	87.5	100	100	100					
	В	87.5	87.5	100	100	100	62.5					
48 HOUR	С	100	· 100	100	100	100	62.5					
	D	100	100	100	100	87.5	87.5					
	E	100	100	100	100	100	100					
P	MEAN	97.5	97.5	97.5	100	97.5	82.5					
	CV % ¹	5.73	5.73	5.73	0.00	5.73	22.98					
Coefficient o	f Variation = (standard	deviation/mean) x 100)	?= canno	t be calculated du	e to 100% mortality	or lab exceptio					
31 (b)b/= ====	0 0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	NO CALE DANGE	TCOT /		Pt. A						
	S PROCEDURE OF			,	·							
s the mear	survival at 48 hour	•					tical dilution?					
	CRITICAL DILUT											
f you repor	t NO, enter a '0' on	the DMR form	for Parameter No	o. TEM6C, othe	r wise enter a '1'	' .						
nter the pe	ercent effluent corre	sponding to ea	ch NOEC below:									
NOE	C SURVIVAL:	100	% Effluent	(Paramet	er TOM6C)							
LOE	C SURVIVAL:	Q*	% Effluent	(Paramet	er TXM6C)							
	Q* refers to	a value that is n	ot calculable									

7008 3230 0002 0696 4237

COOPER TIRE & RUBBER COMPANY

3500 Washington Road • Texarkana, AR 71854

AR Dept. of ENVIRONMENTAL QUALITY
WATER DIVISION - ENFORCEMENT BRANCH
5301 Northshore Drive
North Little Rock, MR
72118-5317